これならわかる機械学習入門

富谷昭夫

{{$t('product.price.discount_rental')}}
あと{{ rentaled.limit }}{{ rentaled.period }}まで

{{$t('product.title_works.limit_sales')}} {{ product.discount_rate == 100 ? $t('product.title_works.only_now_free') : product.discount_rate + '%OFF' }}

{{ product.voice_pack.sum_price | number_format }}
{{ product.voice_pack.parent_official_price | number_format }} {{ product.voice_pack.parent_price | number_format }}
{{ product.voice_pack.child_official_price | number_format }} {{ product.voice_pack.child_price | number_format }}
{{ product.voice_pack.sum_point | number_format }}pt
{{ real_point | number_format }} pt ({{ $t('product.price.point_return', [real_point_rate]) }}) pt ({{ $t('product.price.noreduction') }})
Price
1,320JPY
Points
36pt (3% Earn)
Register for free coupons!
Lowest possible price with coupons
Can be used on purchases over 301 JPY
Lowest possible price with coupons
Available Coupon Check the conditions here

Cannot use coupon

{{ carted.name }}Added

{{ rental.price | number_format }}JPY

{{ real_price | number_format }}JPY

{{ carted.name }}Added

{{ is_favorite ? 'Already in My Favorites' : 'Favorites' }}

{{ is_favorite ? 'Already in My Favorites' : 'Favorites' }}

Purchase bonus

  • {{ gift.title }}

    Available until {{ gift.distribute_end_str }}

  • {{ coupon.coupon_name }}

    Available until {{ coupon.end_date_str }}

    Expiration Date: {{ coupon.user_limit_date }}

    Expiration Date: {{ coupon.limit_days_day }} days after purchase

  • {{ bonus.title }}

    Available until {{ bonus.end_date_str }}

Product information

Author
富谷昭夫
Publisher
講談社
{{ is_favorite ? $t('follow.follow_button.is_favorite') : $t('follow.follow_button.into_favorite') }}
Label
KS物理専門書
Series name
これならわかる機械学習入門
Genre
Science
Release date
May/17/2024
Age
All Ages
Product format
General
File format
Novel Viewer (Browser Only)
Supported languages
Japanese

Product summary

【道具として使いこなす!】
膨大な観測データから普遍的な法則を抽出する手法とは? 高校数学レベルから始まり、Python入門、TensorFlowによる実装、最新の論文まで踏み込む入門書。

【著者サポートページ】
https://github.com/akio-tomiya/intro_ml_in_physics

【目次】
第1章 データとサイエンス
1.1 物理学とデータサイエンス/1.2 最小2乗法とオーバーフィット/1.3 テイラー展開と振り子の等時性/コラム:武谷の三段階論
第2章 行列と線形変換
2.1 ベクトル、行列と線形変換/2.2 変換としての行列/2.3 行列に関する色々/コラム:計算量のオーダー
第3章 確率論と機械学習
3.1 確率の基礎事項/3.2 教師あり学習と教師なし学習、強化学習/3.3 確率変数と経験的確率、大数の法則/3.4 大数の弱法則の証明/3.5 カルバックライブラーダイバージェンス/3.6 尤度と赤池情報量基準、汎化/3.7 ロジスティック回帰
第4章 ニューラルネットワーク
4.1 ニューラルネットワークの概論/4.2 万能近似定理/コラム:新しい道具と新理論
第5章 トレーニングとデータ
5.1 ニューラルネットワークの入出力と学習/5.2 誤差関数と汎化、過学習/5.3 誤差関数の最適化・学習/コラム:次元の呪い
第6章 Python入門
6.1 Pythonによるプログラミング入門/6.2 Pythonと他言語の比較/6.3 NumPyとMatplotlib/6.4 Pythonでのクラス
第7章 TensorFlowによる実装
7.1 TensorFlow/Kerasとは/7.2 データやライブラリのロード/7.3 データの分割とニューラルネットワークの設計/7.4 学習/7.5 結果の評価/コラム:量子化という用語
第8章 最適化、正則化、深層化
8.1 最適化法の改良/8.2 過学習を防ぐ/8.3 多層化にむけて
第9章 畳み込みニューラルネットワーク
9.1 フィルター/9.2 畳み込みニューラルネット/コラム:知能と飛行機
第10章 イジング模型の統計力学
10.1 イジング模型/10.2 イジング模型のモンテカルロ法/10.3 熱浴法のPythonコードとデータの準備/コラム:統計力学と場の量子論
第11章 Nature Physicsの論文を再現しよう
11.1 論文について/11.2 データの前処理/11.3 実験

User Reviews

Works by the same label

Works by the same creator

Works available for sale

Users who bought this work also bought

    Discounts

    Recently checked