これならわかる機械学習入門

富谷昭夫

{{$t('product.price.discount_rental')}}
あと{{ rentaled.limit }}{{ rentaled.period }}まで

{{$t('product.title_works.limit_sales')}} {{ product.discount_rate == 100 ? $t('product.title_works.only_now_free') : product.discount_rate + '%OFF' }}

{{ product.voice_pack.sum_price | number_format }}
{{ product.voice_pack.parent_official_price | number_format }} {{ product.voice_pack.parent_price | number_format }}
{{ product.voice_pack.child_official_price | number_format }} {{ product.voice_pack.child_price | number_format }}
{{ product.voice_pack.sum_point | number_format }}pt
{{ real_point | number_format }} pt ({{ $t('product.price.point_return', [real_point_rate]) }}) pt ({{ $t('product.price.noreduction') }})
Harga
1,320JPY
Poin
36pt (3%Pengurangan)
Daftar untuk mendapatkan kupon gratis!
Harga terbaik dengan voucher
Dapat digunakan untuk pembelian di atas 301 JPY
Harga terbaik dengan voucher

Tidak dapat menggunakan kupon

{{ carted.name }}Ditambahkan

{{ rental.price | number_format }}JPY

{{ real_price | number_format }}JPY

{{ carted.name }}Ditambahkan

{{ is_favorite ? 'Sudah ditambahkan ke favorit' : 'Favorit' }}

{{ is_favorite ? 'Sudah ditambahkan ke favorit' : 'Favorit' }}

Bonus pembelian

  • {{ gift.title }}

    Tersedia hingga {{ gift.distribute_end_str }}

  • {{ coupon.coupon_name }}

    Tersedia hingga {{ coupon.end_date_str }}

    Tanggal kadaluarsa:{{ coupon.user_limit_date }}

    Tanggal kadaluarsa:{{ coupon.limit_days_day }} hari setelah pembelian

  • {{ bonus.title }}

    Tersedia hingga {{ bonus.end_date_str }}

Informasi Karya

Pengarang
富谷昭夫
Penerbit
講談社
{{ is_favorite ? $t('follow.follow_button.is_favorite') : $t('follow.follow_button.into_favorite') }}
Label
KS物理専門書
Nama seri
これならわかる機械学習入門
Genre
理学/科学
Tanggal rilis
17/05/2024
Batas usia
Semua umur
Format Karya
一般書籍
Format file
Penampil Novel (Khusus Browser)
Bahasa yang didukung
Bahasa Jepang

Konten Karya

【道具として使いこなす!】
膨大な観測データから普遍的な法則を抽出する手法とは? 高校数学レベルから始まり、Python入門、TensorFlowによる実装、最新の論文まで踏み込む入門書。

【著者サポートページ】
https://github.com/akio-tomiya/intro_ml_in_physics

【目次】
第1章 データとサイエンス
1.1 物理学とデータサイエンス/1.2 最小2乗法とオーバーフィット/1.3 テイラー展開と振り子の等時性/コラム:武谷の三段階論
第2章 行列と線形変換
2.1 ベクトル、行列と線形変換/2.2 変換としての行列/2.3 行列に関する色々/コラム:計算量のオーダー
第3章 確率論と機械学習
3.1 確率の基礎事項/3.2 教師あり学習と教師なし学習、強化学習/3.3 確率変数と経験的確率、大数の法則/3.4 大数の弱法則の証明/3.5 カルバックライブラーダイバージェンス/3.6 尤度と赤池情報量基準、汎化/3.7 ロジスティック回帰
第4章 ニューラルネットワーク
4.1 ニューラルネットワークの概論/4.2 万能近似定理/コラム:新しい道具と新理論
第5章 トレーニングとデータ
5.1 ニューラルネットワークの入出力と学習/5.2 誤差関数と汎化、過学習/5.3 誤差関数の最適化・学習/コラム:次元の呪い
第6章 Python入門
6.1 Pythonによるプログラミング入門/6.2 Pythonと他言語の比較/6.3 NumPyとMatplotlib/6.4 Pythonでのクラス
第7章 TensorFlowによる実装
7.1 TensorFlow/Kerasとは/7.2 データやライブラリのロード/7.3 データの分割とニューラルネットワークの設計/7.4 学習/7.5 結果の評価/コラム:量子化という用語
第8章 最適化、正則化、深層化
8.1 最適化法の改良/8.2 過学習を防ぐ/8.3 多層化にむけて
第9章 畳み込みニューラルネットワーク
9.1 フィルター/9.2 畳み込みニューラルネット/コラム:知能と飛行機
第10章 イジング模型の統計力学
10.1 イジング模型/10.2 イジング模型のモンテカルロ法/10.3 熱浴法のPythonコードとデータの準備/コラム:統計力学と場の量子論
第11章 Nature Physicsの論文を再現しよう
11.1 論文について/11.2 データの前処理/11.3 実験

Ulasan User

Karya dalam label yang sama

Karya pengarang

Karya jualan

Pengguna yang membeli karya ini juga membeli

    Didiskon

    Karya yang baru saja diperiksa